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Linear regression

Linear regression

The prediction formula is

f (x ; θ) = θ0 + θ1x1 + . . . + θpxp
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Linear regression

The MSE and the OLS

The loss function is the mean squared error, MSE,

L̄(θ) = 1
n

n∑
i=1

{yi − f (xi ; θ)}2.

The optimal parameter under this loss is called the Ordinary Least
Squares, OLS,

θ̂ = arg min
θ

1
n

n∑
i=1

{yi − f (xi ; θ)}2.
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Linear regression

The OLS

To find the OLS, the algorithm is exact and the final solution can be
explicitly computed with the matrix-operation

θ̂ = (XT X )−1XT y ,

where
X is the so-called design matrix of size n × (p + 1) and whose i-th
row contains

[1, xi1, . . . , xip],

y is the vector of length n whose i-th element is yi .
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Logistic regression

Logistic regression

The logistic regression is a model for binary classification. Prediction
formula is in several steps:

Compute the linear predictor

z(x ; θ) = θ0 + θ1x1 + · · · + θpxp,

Compute the probability prediction (sigmoid function):

p(x ; θ) = P(Y = 1|X = x) = exp{z(x ; θ)}
1 + exp{z(x ; θ)} .

Compute the prediction of the class:

f (x ; θ) =
{

1, if p ≥ 0.5,
0, if p < 0.5.
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Logistic regression

The sigmoid and the logit function

The logit function is the inverse of the sigmoid function and thus
transforms p(x ; θ) to z(x ; θ).

z(x ; θ) = log p(x ; θ)
1 − p(x ; θ)
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Logistic regression

Estimation
The loss function uses the probabilities p(x ; θ) and not the final
predictions. The loss is the cross-entropy also called negative
log-likelihood:

L(y , p) = −y log p − (1 − y) log(1 − p).

Interpretation,
If y = 1, we want p to be large (close to 1). The loss is

L(1, p) = − log p

It will be small indeed if p is large.
If y = 0, we want p to be small (close to 0). The loss is

L(0, p) = − log(1 − p)

It will be small indeed if p is small.
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Logistic regression

Estimation

The overall loss is

L̄(θ) = −1
n

n∑
i=1

yi log p(xi ; θ) + (1 − yi) log{1 − p(xi ; θ)}.

The log in this formula can be in any base. Often,
Machine learners use log2,
Statisticians use ln.

This has absolutely no consequence on the final result (all log are
equivalent here). But it can bring confusion from time to time.
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Logistic regression

Optimal parameters

To obtain the optimal parameters, the best algorithm is the
Newton-Raphson algorithm. It requires

To compute the first and second derivatives of L̄(θ),
To build a sequence of θ̂k that converges to the optimal one using
these derivatives.

This algorithm is very fast and efficient. However, there is no explicit
formula for θ̂, unlike the OLS.

The optimal θ̂ is sometimes called the maximum likelihood estimator,
MLE. That terminology is however less usual among machine learners
than statisticians.
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Interpretation

Interpretation

Linear and logistic regressions are highly interpretable in that
the coefficients quantify the link between the features x and the
outcome y .
the certainty of the prediction can be quantify.
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Interpretation

Interpretation of the coefficients

For the linear regression, coefficients are interpreted as slopes.
When the feature x1 increases by 1 unit, the outcome y increases in
average by θ1 units (same for all features 1, . . . , p).
A positive coefficient θj means a positive linear association between
the feature xj and the outcome y .
The larger the coefficients, the larger the association, in absolute
value. (note: pay attention to the scale!)
For the categorical features, the coefficients estimate the average
change in the outcome y when the feature switches from the reference
level to any other level. It is thus a contrast with the reference level.

Note: one should not say that an increase in xj causes an increase of the
response. It is an association. The causality implies a direction and is more
complex to establish.
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Interpretation

Interpretation of the coefficients

For the logistic regression, because of the sigmoid transform, the
interpretation of the coefficients is more difficult than with the linear
regression:

With a positive θj , an increase of xj is associated with an increase of
the probability that y = 1.
The larger the coefficient, the larger the increase. However, it the
increase is not linear and depends on the other features.
A negative coefficient means a decrease in the probability of the
positive class (y = 1).
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Interpretation

Certainty for linear regression

For linear regression, certainty can be measured by prediction intervals.
In practice, the main interest relies in the prediction interval for the future
value1.

Let x be a set of new features, the point prediction for y(x) uses the
estimate θ̂:

f (x ; θ̂) = θ̂0 + θ̂1x1 + · · · + θ̂pxp.

Now, rather than a point estimate, we want to build an interval [L, U]
such that

P(L ≤ y(x) ≤ U) = 1 − α,

where α is usually set to 5% for an interval at 95%. To build this interval,
we rely on probabilistic assumptions of the model.

1As opposed to prediction interval for the mean.
MOB (HEC MSc Mgt BA) Machine Learning Spring 2024 17 / 29



Interpretation

Certainty for linear regression
It is often assumed that the true response y(x) for feature x satisfies

y(x) = θ0 + θ1x1 + · · · + θpxp + e = f (x ; θ) + σe,

where the residual e is normally distributed, e ∼ N(0, σ2), and σ is the
standard deviation.

In particular, we expect the residual distribution to be symmetric around 0
and (informally) respect the 68-95-99.7 rule:

source: http://www.statisticshowto.com/68-95-99-7-rule/
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Interpretation

Certainty for linear regression

Therefore,

0.95 = P(L ≤ y(x) ≤ U) = P
(L − f (x ; θ)

σ
≤ e ≤ U − f (x ; θ

σ
)
)

.

Using the normal distribution, we find that

L − f (x ; θ) = −σz1−α/2, U − f (x ; θ) = σz1−α/2.

This gives

L = f (x ; θ) − σz1−α/2, U = f (x ; θ) + σz1−α/2.

For α = 5%, this gives

(L, U) = f (x ; θ) ± 1.96σ.
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Interpretation

Certainty for linear regression

Using a plug-in estimate, this gives us a rough prediction interval (at 95%)
of

(L̂, Û) = f (x ; θ̂) ± 1.96s,

where s is the unbiased estimate of the standard deviation

s2 = 1
n − (p + 1)

n∑
i=1

{yi − f (xi ; θ̂)}2.

This prediction interval is however hardly used/implemented because
the estimate s carries uncertainty. If taken into account, the Student
tn−(p+1) distribution should be used.
the estimate θ̂ carries uncertainty. If taken into account, the estimate
of s should be changed to s

√
1 + xT (XT X )−1x .

Both adaptations widen the interval.
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Interpretation

Certainty for logistic regression

The probability provides an interpretation of the certainty the model
provides on a classification. Consider:

ŷ = 1 with p̂ = 0.99: the prediction is certain.
ŷ = 1 with p̂ = 0.53: the prediction is uncertain.

In both cases, the predicted class is the same but the probability provides a
more precise view on it: if the instance is far in the class or on the edge
between the two classes.

The prediction ”Good” for a customer with a probability of 0.51 is
uncertain. Alternatively, the prediction rule could set to a larger value than
0.5 to increase the certainty.

Also, a model with a lot of predictions close to 0.5 is of considered as poor
because of its uncertainty2.

2A little thought on that will brings us back to the entropy.
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Selection of variables

Occam’s Razor

A parsimony principle:

”All else being equal, the simplest explanation is the best one”

In other words, among two models with approximately the same
prediction quality, choose the simplest one.
In practice, we remove from the model variables that do not impair
too much the prediction quality.

Simplifying the model is a solution to overfitting. This will be studied
later in the course.
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Selection of variables

Akaike Information Criterion

The AIC (Akaike Information Criterion) is

AIC = −2ℓ̂ + 2k

where
ℓ̂ is the maximum log-likelihood and measure the goodness-of-fit,
k is the number of parameters and measure the model complexity.

Minimizing the AIC achieves a trade-off between the quality of prediction
and the model complexity.
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Selection of variables

Akaike Information Criterion
For linear regressions,

The number of parameters is k = p + 2 with θ0, θ1, . . . , θp and σ,
The log-likelihood part equals

−2ℓ̂ = n ln 2π + n ln σ̂2 + 1
σ̂2

n∑
i=1

{
yi − f (x ; θ̂)

}2
,

where σ̂2 = (n − p − 1)s2/n.
For logistic regressions,

The number of parameters is k = p + 1 for θ0, θ1, . . . , θp,
The log-likelihood part equals

−2ℓ̂ = 2
n∑

i=1
yi ln p(xi ; θ̂) + (1 − yi) ln{1 − p(xi ; θ̂)}.
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Selection of variables

Variables selection with AIC

Automatic variable selection using stepwise minimization of the AIC can
be performed. There are

Backward: start from the most complete model and try to remove
variable one at a time (if it decreases the AIC)
Forward: start from the empty model and try to add one variable at a
time (if it decreases the AIC).
Both: start to add or remove at each step.

At each step, all the models in competition are fitted. The procedure is
computationally intense.
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Selection of variables

Variable selection with penalization

A different approach consists of penalizing the loss function so that, during
the training of the parameters, the variable selection applies directly.

The most common penalties are:
L1 penalty (LASSO)

min
θ

L̄(θ) + λ
p∑

j=1
|θj |

L2 penalty (Ridge)

min
θ

L̄(θ) + λ
p∑

j=1
θ2

j

Usually, θ0 is not penalized.
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Selection of variables

Variable selection with penalization

The penalty parameter λ ≥ 0:
If λ = 0, then there is no penalty.
If λ −→ ∞, then θ −→ 0.

For intermediate values, some components of θ will be small, pushed
toward 0.

This is equivalent to variable selection: setting θj = 0 is equivalent to not
including xj .

Selection of λ can be done with cross-validation (see later).
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Selection of variables

Variable selection with penalization

L1 shrink some of the θj , set some θj = 0, select variables.
L2 shrink all the θj ’s, avoiding extremes θj , regularize θ.

Elastic net combines L1 and L2:

min
θ

L̄(θ) + λ

α
p∑

j=1
|θj | + 1 − α

2

p∑
j=1

θ2
j


with 0 ≤ α ≤ 1,

If α = 0, it is the ridge (L2)
If α = 1, it is the LASSO (L1)

Often, λ is selected by the data (cv), while α is set by the user.
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